Hadis Rostamabadi

OFFICE ADDRESS

Food Security Research Center (FSRC), School of Nutrition and Food Sciences, Isfahan University of Medical Sciences (IUMS) Isfahan, 81746–73461, Iran.

CURRENT POSITION

Assistant Professor of Food Science and Technology

EDUCATION

2020-2021, Iran's National Elites Foundation Postdoc researcher

- Gorgan University of agricultural sciences and natural resources
- Department of Food Science and Technology

2019-2020, Postdoc researcher

- Isfahan University of Technology
 - Department of Materials Engineering (Biomaterials research group)

2016-2019, Ph.D

Gorgan University of agricultural sciences and natural resources

- Food science and technology, GPA: 18.93/20, completed in 3 years.
- **Thesis**: Preparation of electrosprayed nanoparticles from quince seed mucilage and their application for encapsulation of β-carotene.

UNIVERSITY SERVICES

• Member of Ethics Committee of Isfahan University of Medical Sciences, 2021-present.

• Member of Research Council of Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, 2021-present.

HONORS AND AWARDS

Winner of the INEF-Mustafa Science and Technology Foundation fully-founded scholarship award for attending as a visiting scholar in Prof. Khademhosseini's lab at TERASAKI for Biomedical Innovation, Los Angeles, California, USA
Winner of the "Shahid Chamran", "Shahid Shahriari", and "Shahid Tehrani Moghadam" Grants by the Iran's National Elites Foundation
Ranked 1st among Ph.D. students' of 2016 entrance with overall GPA of 18.93/20
Ranked 1st among M.Sc. students' of 2013 entrance with overall GPA of 18.20/20

CONTACT

PHONE: +98-3137923181

EMAIL:

- <u>rostamabadi@nutr.mui.ac.ir</u>
- <u>Hadis.rostamabadi@gmail.com</u>

Social networks:

Google scholar

GRANTS

- Encapsulation of curcumin within chitosan-dialdehyde starch nanoparticles; characterization, pH responsivity, and anti-cancer activity; granted by: Isfahan University of Medical Sciences, 2021.
- Curcumin-loaded gelatin-dialdehyde starch hydrogels; design, characterization, and anti-cancer activity; granted by: Isfahan University of Medical Sciences, 2021.
- Electrospinning of layer-by-layered, heteroaggregated, and directly mixed β-carotene emulsions stabilized by whey proteins and gum Arabic; granted by: Isfahan University of Medical Sciences, 2021.
- Design and characterization of biocompatible complexes of pectin and soy protein isolate fibrils for co-encapsulation of resveratrol and Lactobacillus plantarum; granted by: Isfahan University of Medical Sciences, 2021.
- Facile fabrication of electrospun whey protein isolate nanofibers via aqueous/alcoholic prefibrillation approach; granted by: Isfahan University of Medical Sciences, 2021.
- Preparation, characterization, and applications of lycopene nanodelivery systems; granted by: Isfahan University of Medical Sciences, 2021.
- Physicochemical interactions of protein-polysaccharide systems for encapsulation of bioactive agents; granted by: Isfahan University of Medical Sciences, 2021.
- Seed gum-based delivery systems for micro/nano-encapsulation of bioactive molecules; granted by: Isfahan University of Medical Sciences, 2021.
- Use of electrosprayed κ-carrageenan nanoparticles for encapsulation of highly sensitive bioactive agents; Characterization, in vitro release, and stability; granted by: Isfahan University of Medical Sciences, 2021.

RESEARCH EXPERIENCE

• PhD Researcher | Gorgan university of agricultural sciences and natural resources

- Investigated novel natural based hydrocolloids (Quince seed mucilage) as delivery vehicles for controlled release/delivery of hydrophobic bioactives.
- Designed β-carotene loaded glucuronoxylan-based nanostructures through emulsionelectrohydrodynamic atomization.
- Utilized divers microscopy and structural analysis i.e. SEM, TEM, AFM, XRD, TGA, DSC, and FT-IR to investigate physicochemical/thermal attributes of bioactive nano-vehicles.
- Initiated, designed, and executed an independent project, deeply evaluating the electrospinning/electrospraying behavior of electrostatically/ covalently bounded proteinpolysaccharide systems.
- Developed protocol for and mentored 2 M.Sc. students on electrohydrodynamic atomization of natural gums.
- Studied the application of lipid nanostructures for encapsulation and targeted delivery of valuable carotenoids.
- Assessed the application of starch as a cutting-edge natural biopolymer for encapsulation of bioactive agents.
- Investigated the potential of different emulsification strategies (i.e. layer by layer, directly mixing and heteroaggregation approaches) for fabrication of bioactive loaded systems.

MSc Researcher | Agricultural Sciences and Natural Resources University of Khuzestan

- Incorporated natural based hydrocolloids e.g. Almond gum into the formulation of dairy products as fat replacers.
- Investigated the rheological, microscopy and textural behavior of various dairy products enriched with natural based hydrocolloids.

RESEARCH INTERESTS

- $_{\odot}$ Bioactive delivery systems
- Food bioactive agents
- \circ Hydrogels
- \circ Colloids
- Functional food
- **•** Emulsions/Pickering emulsions
- Electrostatic/covalent protein-polysaccharide systems
- o Electrospinning/electrospraying

PROFESSIONAL ASSOCIATION MEMBERSHIPS, SERVICES AND ACTIVITIES

- **Reviewer (Journals):**
- Food Hydrocolloids
- Critical Reviews in Food Science and Nutrition
- LWT Food Science and Technology
- Food Control
- Food and Bioproducts Processing
- Drying Technology

Editor (Book):

"Unit Operations and Processing Equipment in the Food Industry" (it will be published by Elsevier in 2021-2023).

PUBLICATIONS

Title	Journal/Publisher	Authors	Year
Lycopene nanodelivery systems; recent advances	Trends in Food Science & Technology	Falsafi, Rostamabadi *, Babazadeh, Tarhan, & Jafari	2022
DOI: doi.org/10.1016/j.tifs.2021.12.016	_		
The role of emulsification strategy on the electrospinning of β -carotene-loaded emulsions stabilized by gum Arabic and whey protein isolate	Food Chemistry	Falsafi, Rostamabadi *, Nishinari, Amani & Jafari	2022
DOI: doi.org/10.1016/j.foodchem.2021.131826	_		
Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes	Pharmacological Research	Falsafi, Rostamabadi *, Samborska, Mirarab, Rashidinejhad & Jafari	2022
DOI: doi.org/10.1016/j.phrs.2022.106164	_		
Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review	International Journal of Biological Macromolecules	Solanki, Rostamabadi , Patel, Jafari	2021
DOI: <u>doi.org/10.1016/j.ijbiomac.2021.10.040</u>	_		
Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules	Advances in Colloid and Interface Science	Rostamabadi*, Falsafi, Assadpour, & Jafari	2021
DOI: doi.org/10.1016/j.cis.2021.102384			
Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals	Trends in Food Science & Technology	Samborska, Boostani, Geranpour, Hosseini, Dima, Khoshnoudi-Nia, Rostamabadi , Falsafi,	2021
DOI: doi.org/10.10.1016/j.tits.2021.01.008		Jafaric	

Covalent and Electrostatic Protein- Polysaccharide Systems for Encapsulation of Nutraceuticals DOI: <u>doi.org/10.1016/B978-0-12-819724-0.00055-0</u>	In book: Reference Module in Materials Science and Materials Engineering Academic Press.	Rostamabadi , Falsafi, & Jafari	2021
Possible health risks associated with nanostructures in food	In book: Safety and Regulatory Issues of	Rezaei, Daeihamed, Capanoglu, Rostamabadi , Falsafi s	2021
DOI: doi.org/10.1016/B978-0-12-815725-1.00002-1	Ingredients	Jafari	
Application of nano/microencapsulated ingredients in chewing gum	In book: Application of Nano/Microencapsulated	Cacciotti, Garavand, Rostamabadi,	2021
DOI: doi.org/10.1016/B978-0-12-815726-8.00008-8	Ingredients in Food Products. Academic Press.	Khorshialan, Sariak, Jafari	
Design and formulation of nano/micro- encapsulated natural bioactive compounds for food applications	In book: Application of Nano/Microencapsulated Ingredients in Food Products	Rostamabadi , Falsafi, Boostani, Katouzian, Rezaei, Assadpour, Jafari	2021
DOI: doi.org/10.1016/B978-0-12-815726-8.00001-5	Academic Press.	Schan	
Evaluating the structural properties of bioactive- loaded nanocarriers with modern analytical tools	Comprehensive Reviews in Food Science and Food	Rostamabadi , Falsafi, Assadpour, & Jafari	2020
DOI: doi.org/10.1111/1541-4337.12653	Safety		
Effect of sonication on physical, chemical and functional properties of oat starch	Journal of Food Processing and Preservation	Maghsoudlou, Falsafi, Rostamabadi	2020
DOI: doi.org/10.22069/EJFPP.2020.14426.1462			
Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations DOI: <u>doi.org/10.1016/j.tifs.2020.04.012</u>	Trends in Food Science & Technology	Rostamabadi , Assadpour, Tabarestani, Falsafi, & Jafari	2020
Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM DOI: <u>doi.org/10.1016/j.cis.2020.102166</u>	Advances in Colloid and Interface Science	Falsafi, Rostamabadi , Assadpour, & Jafari	2020
Introduction to characterization of nanoencapsulated food ingredients DOI: <u>doi.org/10.1016/B978-0-12-815667-4.00001-8</u>	In book: Characterization of Nanoencapsulated Food Ingredients. Academic Press.	Assadpour, Rostamabadi , & Jafari	2020
Transmission electron microscopy (TEM) of nanoencapsulated food ingredients DOI: <u>doi.org/10.1016/B978-0-12-815667-4.00002-X</u>	In book: Characterization of Nanoencapsulated Food Ingredients. Academic Press.	Rostamabadi , Falsafi, & Jafari	2020
X-ray diffraction (XRD) of nanoencapsulated food ingredients DOI: <u>doi.org/10.1016/B978-0-12-815667-4.00009-2</u>	In book: In Characterization of Nanoencapsulated Food Ingredients. Academic Press.	Falsafi, Rostamabadi , & Jafari	2020
Fabrication of β-carotene loaded glucuronoxylan-based nanostructures through electrohydrodynamic processing DOI: doi.org/10.1016/j.ijbiomac.2019.07.182	International journal of biological macromolecules	Rostamabadi , Mahoonak, Allafchian, & Ghorbani	2019

Nanoencapsulation of carotenoids within lipid- based nanocarriers DOI: <u>doi.org/10.1016/j.jconrel.2019.02.005</u>	Journal of controlled release	Rostamabadi , Falsafi, & Jafari	2019
Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery DOI: <u>doi.org/10.1016/j.tifs.2019.04.004</u>	Trends in Food Science & Technology	Rostamabadi , Falsafi, & Jafari	2019
Nano-helices of amylose for encapsulation of food ingredients. DOI: <u>doi.org/10.1016/B978-0-12-815663-6.00016-1</u>	In book: Biopolymer nanostructures for food encapsulation purposes, Academic press	Rostamabadi , Falsafi, & Jafari	2019
Nanostructures of starch for encapsulation of food ingredients. DOI: <u>doi.org/10.1016/B978-0-12-815663-6.00015-X</u>	In book: Biopolymer nanostructures for food encapsulation purposes. Academic Press.	Rostamabadi , Falsafi, & Jafari	2019
Preparation of physically modified oat starch with different sonication treatments DOI: doi.org/10.1016/j.foodhyd.2018.10.046	Food Hydrocolloids	Falsafi, Maghsoudlou, Rostamabadi , Hamedi, Hosseini	2019
Effect of Persian and almond gums as fat replacers on the physicochemical, rheological, and microstructural attributes of low-fat Iranian White cheese DOI: https://doi.org/10.1002/fsn3.446	Food Science and Nutrition	Jooyandeh, Goudarzi, Rostamabadi , & Hojjati	2017

Research Projects

• Preparation, characterization, and applications of lycopene nanodelivery systems

• Physicochemical interactions of protein-polysaccharide systems for encapsulation of bioactive

agents

• Seed gum-based delivery systems for micro/nano-encapsulation of bioactive molecules

o Insights into whey protein-based carriers for targeted delivery and controlled release of bioactive

components

• Advanced oral delivery of bioactive molecules via prebiotic and dietary fiber-based polymers

o Fabrication of electrospun whey protein isolate nanofibers via aqueous/alcoholic pre-fibrillation

approach; Physicochemical and structural properties

o Biocompatible complexes of soy protein isolate fibrils and pectin for co-delivery of resveratrol and

Lactobacillus plantarum

 \circ The utilization of electrosprayed κ -carrageenan nanoparticles for encapsulation of highly sensitive bioactive agents

• Encapsulation of curcumin within whey protein isolate-basil seed gum based nanofibers

 $_{\circ}$ Electrospinning of layer-by-layered, heteroaggregated, and directly mixed β -carotene emulsions stabilized by whey proteins and gum Arabic

• Curcumin-loaded gelatin-dialdehyde starch hydrogels; design, characterization, and anti-cancer activity

• Encapsulation of curcumin within chitosan-dialdehyde starch nanoparticles; characterization, pHresponsivity, and anti-cancer activity